
 

PreservedCurvatureconditionsalongthe RF

for more applications in dim 3 we proceed as follows

Let eis be an o n frame on U EM

we get an o n basis 0 01 eine of 174
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our orderedbasis ordered basis is a well defined

Liealgebrahomomorphism

M is parallelizable we have aglobalframe e so

we get an o n basis OK Of eine of A TM3

eg such a basis can be taken to be
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One can also calculatethe Liealgebrasquare bynoticing that

Oi05 0K is fully alternating in i j k
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We use the same symbol Rmto identify the quadraticformRm

on A'TM i e
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andusing the basis 0 0303 to identify Rm as a 3 3 matrix
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8 If eis endues to remainorthonormal thereby the Uhlenbeck's

trick we know Rm satisfies the PDE
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and heure its behaviour is governedbythe ODE

ofRm Rm Rm in each fiber

Choose Seil so that Rm o is diagonal at ne M w eigenvectors
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If e g MH 21 0 there we are done If at some to weget
µ to 2 to there log M W is defined on 01to and was

to

11 d Mtv a atleast one of 1 Mora has

a discontinuity at to and they cease to exist
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Applications

1 Let CoeIR and let K M A Mtn Co

traceof M is a linearfunction convex By thecriterionfor
invarianceunder paralleltranslation we get that K is invariant

underparalleltranslation

wewantto check that theODE M MYM is preservedby
K



If 4 4 2 A M t2 dat ma do
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8 if Rm K at t 0 their it remains so ft

This isjustanotherway ofsaying that if R Co at t o then

R Co t which we already knew before

Remark we are ofcourse using thefact that in dim 3 interms

ofthe eigenvalues ofRm
is no
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Let K M 2 M 0 2 is the lowesteigenvalueof1M

and themap w Vx IR is a concave function b c
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what about the preservationof the ODE
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if either v10 0 off 0 2 t 0
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f W M and I are all initially 0 thenthey remain so soagain
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In any case K is preservedby ODE if Rmlo E K there

RMLF F K t

Rm 0 is preserved in dim 3

Exercise K M MIN UCM 20 Re20 ispreserved

of same idea as before Mtv is a concavefunction D

K is a convex set forpreservation eir the ODE

If un 24Mt dat do a 22 d Mto 20

whenever Mtv 0

K is preservedby the ODE Re 20 ispreserved

Riccipinching ispreserved i e if the eigenvaluesofRmone
Exe checkthatK

initially close together thentheyremain so t is convex

If J Rm E C MIRM 2 Rm for C then itremainso
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J t u f Mlt t the ODE is preserved

Assumenow C 1 and o Mio 210

then we must have 410 210 20 b c 110 4107 2101

if MCO 210 co then we can never have 10 C 41012107

w C So we must have MD 210 10

now look at Mtu MY 04 1 Mta

here it either MIO 210 110 0 Mlt 247 11 7 0

and the ODE trivially preserves the set K

i Or it can happen that 1 a
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NH o so we can take logarithms

we get f log 1 E
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by the ODE

if the initial eigenvalues ofRm at a point are pinched
then they remain so

Recall in dim 3 above estimate saysthat
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w E and we geta betterestimate



Remark If Ric9107 so then estimate is satisfiedand

weget the Riccipinching estimateforsome CCs

5 Ricci pinching is improved i e the metricg t isalmostEinstein

atpoints where the scalarcurvature is very large

Let Coso C Ca Ca and 02 8 1 Consider
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Exe show that K is a convex set

The first two inequalities are alreadypreservedbythe ODE
so we look at the third one
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not possible Mt 070 this alsoimplies that Ric9107 o
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Exercise Prove that the above is equivalent to

Re Rg C R
8 This isfellingin that thesectional

curvatures

get pinched together as thecurvature
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Thus the estimates we have provedforthe curvaturesalong theRFare
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If O T is the maximalexistence time of our RF weknowthat
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